Positive solutions to fractional boundary value problems with nonlinear boundary conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions to fractional boundary value problems with nonlinear boundary conditions

We consider the existence of at least one positive solution of the problem –D0+u(t) = f (t,u(t)), 0 < t < 1, under the circumstances that u(0) = 0, u(1) = H1(φ(u)) + ∫ E H2(s,u(s))ds, where 1 < α < 2, D α 0+ is the Riemann-Liouville fractional derivative, and u(1) = H1(φ(u)) + ∫ E H2(s,u(s))ds represents a nonlinear nonlocal boundary condition. By imposing some relatively mild structural condit...

متن کامل

Positive Solutions of Nonlinear Fractional Boundary Value Problems with Dirichlet Boundary Conditions

In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of posit...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Multiple Positive Solutions for Nonlinear Fractional Boundary Value Problems

This paper is devoted to the existence of multiple positive solutions for fractional boundary value problem DC0+αu(t)=f(t, u(t), u'(t)), 0<t<1, u(1)=u'(1)=u''(0)=0, where 2<α≤3 is a real number, DC0+α is the Caputo fractional derivative, and f:[0,1]×[0, +∞)×R→[0, +∞) is continuous. Firstly, by constructing a special cone, applying Guo-Krasnoselskii's fixed point theorem and Leggett-Williams fix...

متن کامل

Positive solutions of nonlinear fourth order boundary value problems with local and nonlocal boundary conditions

We establish new existence results for multiple positive solutions of fourth order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many nonlocal boundary conditions, with a unified approach. Our method is to show that each boundary value problem can be written as the same type of pert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2014

ISSN: 1687-2770

DOI: 10.1186/s13661-014-0225-0